Activité : Simuler une expérience aléatoire à l'aide d'un tableur

Dans le cours précédent, nous avons étudié la probabilité que Tony avait de gagner avec sa voiture 8.

Dans les questions supplémentaires, on a calculé la fréquence d'apparition de la voiture 8 et on la comparé à sa probabilité.

On a vu que la fréquence était différente de la probabilité.

Comment peut-on rapprocher la fréquence de l'échantillon de la probabilité en utilisant un tableur ?

1. Générer un nombre entier aléatoire entre 1 et 6 dans la cellule A1 d'un tableur.

Note: on obtient un nombre entier aléatoire compris entre les nombres 1 et 6 en utilisant ALEA.ENTRE.BORNES (1;6): =ALEA.ENTRE.BORNES(1;6)

Etendre la formule saisie dans A1 à la cellule B1.(Faire en sorte d'avoir le (+)).

Saisir dans la cellule C1 la formule $^{=A1+B1}$. Appuyer plusieurs fois sur la touche F9. Image de ce que tu aurais dû avoir.

Repondre a	ia question : C	que simulent ces ti	rois ceilules ?	

- 2. Pour simuler un grand nombre de parties, sélectionner la plage de cellules A1 à C1 et l'étendre jusqu'à la 50e ligne.
- 3. Saisir le nombre 8 dans les cellules E1.
- 4. Dans la cellule F1, on calcule le nombre d'apparition de la voiture 8 dans les cellules C1 à C 50. Pour cela, renseigner la cellule F1 : La formule est NB.SI (C1:C50 ; E1). Mettre des \$ en tapant sur F4.
- 5. Calculer la fréquence $f = \frac{\text{nombre d'apparition}}{\text{Taille échantillon}}$. Pour cela, taper dans la cellule G1 =E1/50 (ici la taille de l'échantillon est de 50)
- 6. Compléter le tableau suivant en calculant les fréquences $f = \frac{\text{nombre d'apparition}}{\text{Taille échantillon}}$:

Echantillon taille 50	1	2	3	4	5
Nombre d'apparition de 8					
Fréquence de l'échantillon					

7. Donner la fréquence maximum et minimum							
8. Calculer l'étendue des fréquences E = fmax-fmin							
9. Sur une secon l'échantillon à		ableur, refaire	l'expérience	en augmenta	nt la taille de		
10. Complé	éter le tableau	ı suivant en c	alculant les f	réquences :			
Echantillon taille 100	1	2	3	4	5		
Nombre d'apparition de 8							
Fréquence de l'échantillon							
11. Donner	la fréquence	maximum et	minimum				
				nin erience en aug			
14. Complé	éter le tableau	ı suivant en c	alculant les f	réquences :			
Echantillon taille 200	1	2	3	4	5		
Nombre d'apparition de 8							
Fréquence de l'échantillon							
15. Donner la fréquence maximum et minimum							
16. Calcule	er l'étendue de	es fréquences	s E = fmax-fn	nin			

17.	Sur une seconde feuille du tableur, refaire l'expérience en augmentant la
taille d	de l'échantillon à 1 000.

18.	Compléter	le tableau	suivant	:

Echantillon taille 1 000	1	2	3	4	5
Nombre d'apparition de 8					
Fréquence de l'échantillon					

19.	Donner la fréquence maximum et minimum
20.	Calculer l'étendue des fréquences E = fmax-fmin
21.	Rappeler la valeur de la probabilité d'avancer la voiture 8.
22.	Quelle taille d'échantillon a l'étendue la plus petite.
 23.	Répondre à la problématique

Essentiel:

Lorsque la taille n de l'échantillon augmente, la fréquence se rapproche de la probabilité.